
NCS 362: Embedded Systems

Instructor: ² Dr. Ahmed Shalaby

http://bu.edu.eg/staff/ahmedshalaby14#

Embedded Systems

Benha University Home النسغة العربية My C.V. About Courses Publications Inlinks(Competition) Theses Reports Published books Workshops / Conferences Supervised PhD Supervised MSc **Supervised Projects** Education Language skills Academic Positions Administrative Positions Memberships and awards Committees **Scientific Activities** Experience **Outgoing Links** News

You are in:<u>Home</u> Dr. Ahmed Shalaby

Academic Position: Asst. Professor **Current Administrative Position:** Ex-Administrative Position: Faculty: Computers and Artificial Intelligence **Department: Computer Science** Edu-Mail: ahmed.shalaby@fci.bu.edu.eg Alternative Email: ahmed.shalaby@ejust.edu.eg Mobile: Scientific Name: Ahmed Shalaby Publications [Titles(11) :: Papers(3) :: Abstracts(11)] Courses Files(93) Inlinks: (0) External links: (41) News Great Teams: Embedded System Course: CanSat Project. [2022-07-04] https://www.youtube.com/watch?v=w7v8W1ENgqMmore Research Interests Hardware Security, System on Chip, Network on Chip, VLSI, Embedded System, High Efficiency Video Coding (HEVC)

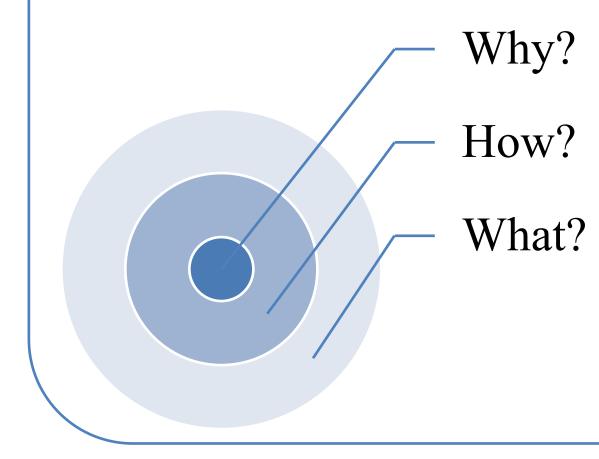
Selected Publications

Efficient autoencoder-based human body communication transceiver for WBAN

Sentry-NoC: a statically-scheduled NoC for secure SoCs

Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter

Google


RG

in

Ŵ

	My C.V.	URL	Ku
T	About	Learn any language!	in
	Courses	Past, Present, and Future of Computer Architecture	F
	Publications	<u>تاريخ الكسيوتر History of computers</u>	
	Inlinks(Competition)	تاريخ أنظمة التشغيل History of Operating Systems	
-	Theses	Try to understand and Improve your English: Surah al-Kahf (in-depth) Tafsir	Q+
	Reports	WHY IS JESUS WHITE BY MUHAMMAD ALI	You
	Published books	Improve you English audio books	_
	Workshops / Conferences	<u>Motivation: جيل الألفية - سيمون سينك</u>	W
E.	Supervised PhD	What If Money Was No Object? - Alan Watts	
	Supervised MSc	awesome Tech : Michi Yamamoto Channel	- 0
-2	Supervised Projects	BBC Learning English	
	Education	Longman 3000 Words List Pronunciation	_ Z
100	Language skills	Longman Communication 3000 Words	
	Academic Positions	Speak English: English Coach Chad	- 6
		IEEE Spectrum Magazine	
	Administrative Positions	MIT Technology Review	Scopus
	Memberships and awards	zAmericanEnglish - Channel	
	Committees	50 years of Computer Architecture- by David Patterson	
	Scientific Activities	ملخص كتاب : 12 قاعدة للحياة - جور دن بيترسون	
	Experience	Silicon Run : manufacture microchips	_
	Outgoing Links	يابانية اعتنقت الإسلام ونطرح أسئلة جميلة	
T	News	أول منصبة عربية متخصصة في التحديات البر مجية	
	Photo Gallery	Calculus - anaHr	
	Staff Statement	The Now Habit - <u>مادة الإنجاز</u>	
		The astounding athletic power of quadcopters	
		PROJECTION MAPPING	

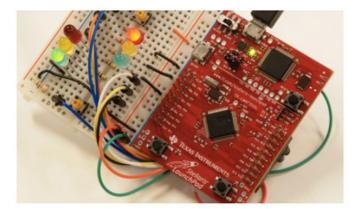
CSE234: Embedded Systems

What ? Embedded Systems

- Embedded computing system: any device that includes a programmable computer but is not itself a general-purpose computer.
- Take advantage of application characteristics to optimize the design.

How? Course Book

the avr microcontroller and embedded systems using assembly and c

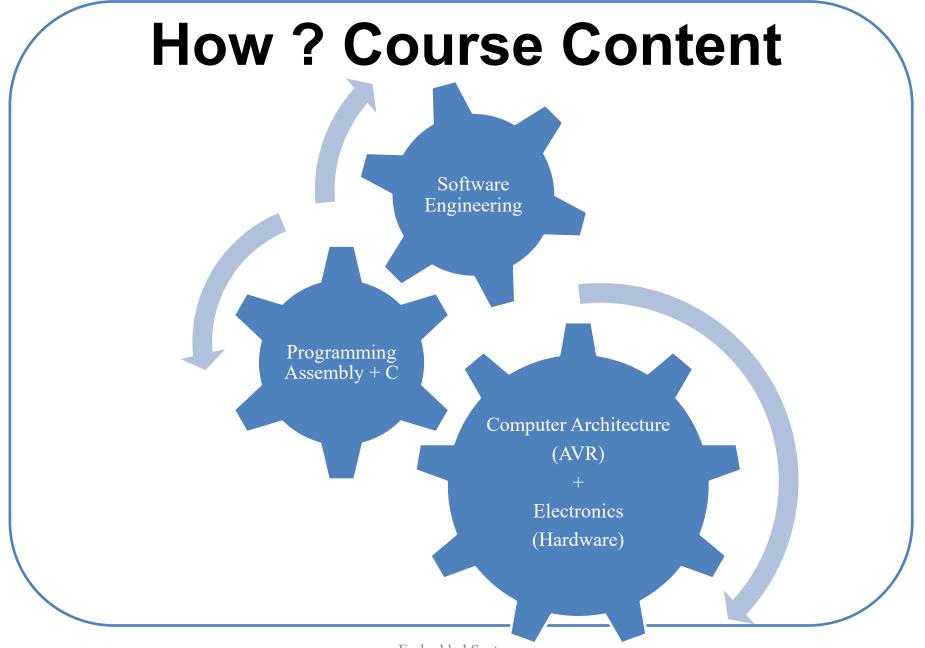

How? Course Book

Embedded Systems - Shape The World

http://users.ece.utexas.edu/~valvano/Volume1/E-Book/

C () users.ece.utexas.edu/~valvano/Volume1/E-Book/

Embedded Systems - Shape The World

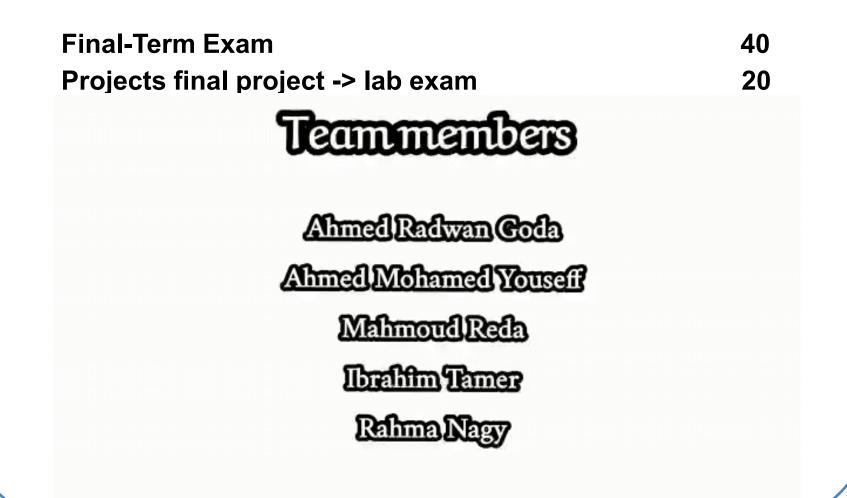

Jonathan Valvano and Ramesh Yerraballi

Embedded Software in C

http://users.ece.utexas.edu/~valvano/embed/toc1.htm

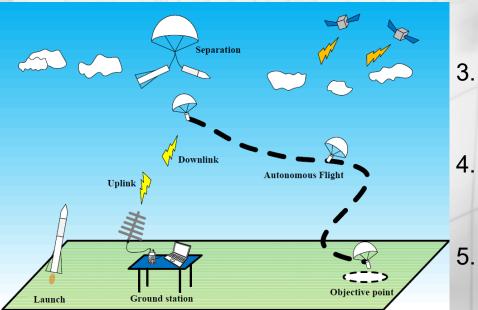
Table of Contents

- Chapter 1: Introduction
- Chapter 2: <u>Fundamental Concepts</u>
- Chapter 3: <u>Electronics</u>
- Chapter 4: <u>Digital Logic</u>
- Chapter 5: <u>Introduction to C</u>
- Chapter 6: <u>Microcontroller Ports</u>
- Chapter 7: <u>Design and Development Process</u>
- Chapter 8: Switches and LEDs
- Chapter 9: <u>Arrays and Functional Debugging</u>
- Chapter 10: <u>Finite State Machines</u>
- Chapter 11: <u>UART The Serial Interface</u>
- Chapter 12: <u>Interrupts</u>
- Chapter 13: DAC and Sound
- Chapter 14: ADC and Data Acquisition
- Chapter 15: <u>Systems Approach to Game Design</u>
- Chapter 16: <u>The Internet of Things</u>
- Appendix: <u>Reference Material</u>
- Video links: Web links to videos (All chapters 1 to 16)
- Closed caption files: <u>Closed caption srt files</u>
- Index: Index of terms and concepts



Embedded Systems

How ? Course Content


Lec #	Subject	Week #
Lec1	ec1 Introduction to Embedded Systems	
Lec2	Introduction to microcontrollers.	Week #2
Lec 3	Microcontrollers - architecture & families	Week #3
Lec 4	microcontrollers – Software Engineering	Week #4
Lec 5	microcontrollers - C Language	Week #5
Lec 6	microcontrollers - assembly language	Week #6
	Mid-term Exam	Week #7
Lec 7	Input/ Output Interface.	Week #8
Lec 8	microcontrollers – addressing modes	Week #9
Lec 9	Serial, Parallel, and Analog I/O Interfacing	Week #10
Lec 10	Interrupt Programming	Week #11
Lec 11	Communication Protocols (Serial and Parallel)	Week #12
Lec 12	Debugging, and Code Optimization	Week #13
Lec 13	Prototyping, and Final Project.	Week #14

Assessment

CanSat Mission Sequence

- 1. Set up CanSat and put it into a rocket and turn on switch .
- 2. Rocket side prepare launch (you cannot contact and not predict the time in this phase precisely)
- 3. Launch with high acceleration (CanSat may measure something in a rocket and write in memory)
- 4. CanSat starts certain operation triggered by some switch at the timing of release from the rocket
 - Downlink mission data as well as write in memory
- 6. Uplink command may tell CanSat to do something
- 7. Landing may trigger also another actions

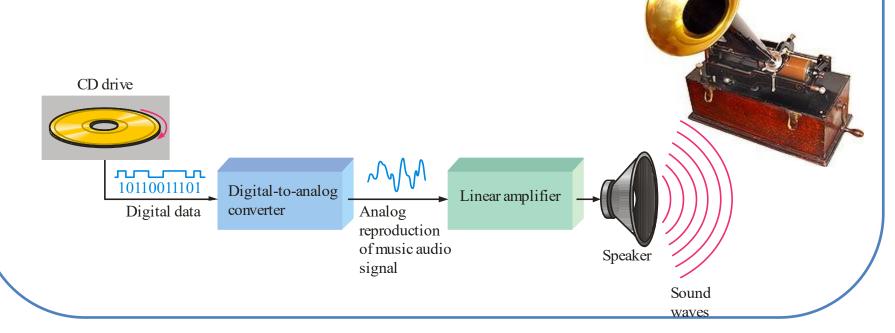
Assessment

Air Command Water Rockets Day 90 Acceleron V & Axion IVb flights to 787' and 810'

27th March 2010

www.AirCommandRockets.com

Why? Embedded Systems



Analog to Digital Systems (Why)

- Easier to design.
- Flexibility and functionality. easier to store, transmit and manipulate information.
- Cheaper device.

Embedded Systems

Digital System (Why) Analog vs. Digital

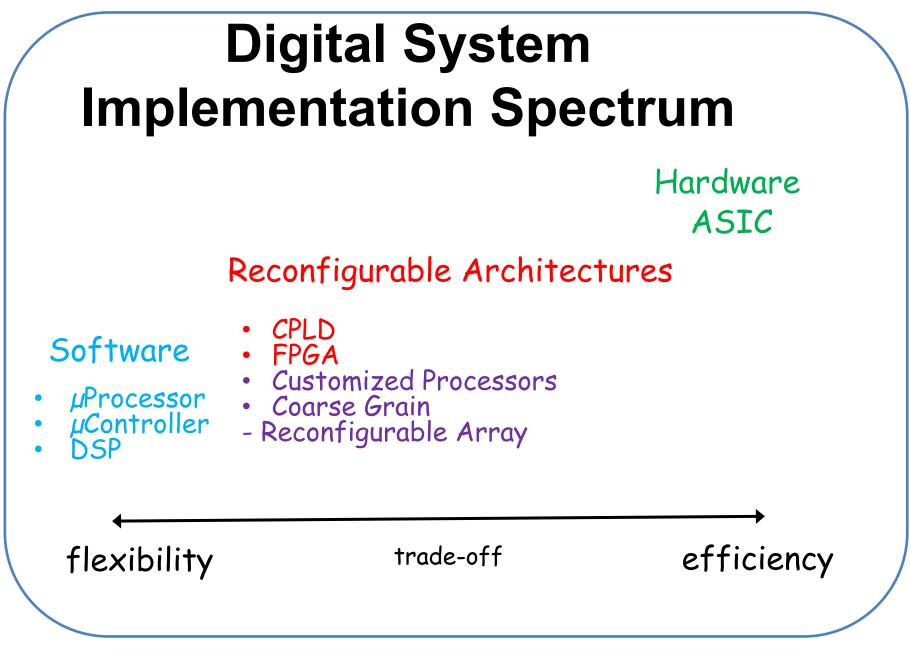
Most natural quantities (such as temperature, pressure, light intensity, ...) are **analog** quantities that vary continuously.

Digital systems can process, store, and transmit data more efficiently but can only assign discrete values to each point.

IC Technologies

- ASIC (Application Specific Integrated Circuit)
 - □ Full Custom (Transistor Level)
 - □ Standard Cell (Gate Level libraries)
 - Gate Array (Gate Level already created of the wafer)
- Filed Programmable Devices

□ Complex


- Complex Programmable Logic Devices (CPLD)
- Field Programmable Gate Array (FPGA)

□ Simple

- Programmable logic Devices (PLD)
- Off-The-Shelf Components

□ MSI / SSI (Transistor Transistor Logic TTL - Series 7400),

Complementary Metal Oxide Semiconductor CMOS - Series 4000)

